
QUANDO E COME INIZIARE LA TERAPIA Cardialin **ANTIDIABETICA NEL** PAZIENTE CON MULTIPLI **FATTORI DI RISCHIO?**

Riccardo Candido S.S. Centro Diabetologico Distretto 3 Azienda Sanitaria Universitaria Giuliano Isontina

Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes

Aidin Rawshani, M.D., Araz Rawshani, M.D., Ph.D., Stefan Franzén, Ph.D., Björn Eliasson, M.D., Ph.D.,
 Ann-Marie Svensson, Ph.D., Mervete Miftaraj, M.Sc., Darren K. McGuire, M.D., M.H.Sc.,
 Naveed Sattar, M.D., Ph.D., Annika Rosengren, M.D., Ph.D., and Soffia Gudbjörnsdottir, M.D., Ph.D.

N Engl J Med 2017;376:1407-18

ORIGINAL ARTICLE

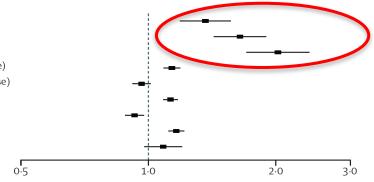
Rawshani A et al. *N Engl J Med* 2018;379:633–644 Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes

	All Patients		ents without Coexisting Conditions at Baseline		All Patients	l	Patients without Coexisting Conditions at Baseline
Glycated hemoglobin		Glycated hemoglobin	•	Glycated hemoglobin	•	Glycated hemoglobin	
Systolic blood pressure	•	LDL cholesterol	•	Systolic blood pressure	•	Systolic blood pressure	•
DL cholesterol	•	Systolic blood pressure	•	Duration of diabetes	•	Physical activity	•
Physical activity	•	Smoking	•	Physical activity	•	Duration of diabetes	•
Smoking	•	Physical activity	•	Atrial fibrillation	•	Income	•
Duration of diabetes	•	Estimated GFR		Income	•	Smoking	•
Estimated GFR	•	Duration of diabetes	•	Marital status	•	Marital status	•
Income	•	Income		Smoking	•	Lipid-lowering medication	•
Diastolic blood pressure		Diastolic blood pressure	•	Estimated GFR	•	Estimated GFR	•
Heart failure	•	Marital status	•	Lipid-lowering medication	•	Blood-pressure medication	•
Blood-pressure medication	•	Education	•	Blood-pressure medication	•	Diastolic blood pressure	•
Marital status		Blood-pressure medication		LDL cholesterol	•	LDL cholesterol	•
Education		Albuminuria 📃		Diastolic blood pressure	•	Education	•
Albuminuria	•	Immigrant 🔶		Body-mass index	•	Albuminuria	•
Lipid-lowering medication		Lipid-lowering medication 🔶		Heart failure	•	Body-mass index	•
Immigrant		Body-mass index 🔶 🔶		Albuminuria	•	Immigrant	•
Atrial fibrillation				Education	•	-	
Body-mass index 0.	2000 0.005 0.010 0.015 0.020	0.000	0.005 0.010 0.015 0.020	Immigrant 0.	000 0.005 0.010 0.015	0.0	000 0.005 0.010 0.01
	Increasing Importance		Increasing Importance		Increasing Importance		Increasing Importance

) 🐔

Microvascular disease and risk of cardiovascular events among individuals with type 2 diabetes: a population-level cohort study

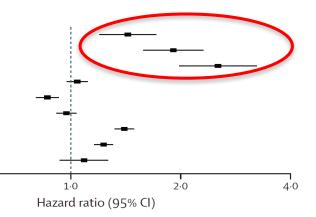
Jack R W Brownrigg, Cian O Hughes, David Burleigh, Alan Karthikesalingam, Benjamin O Patterson, Peter J Holt, Matthew M Tho Simon de Lusignan, Kausik K Ray*, Robert J Hinchliffe*


3-MACE

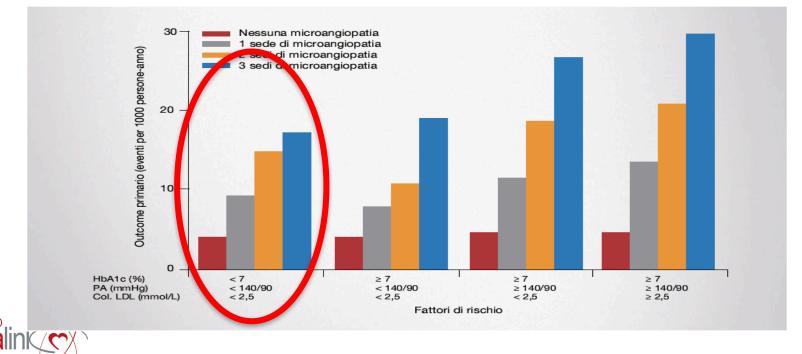
Heart Failure

Α

1 microvascular disease state 2 microvascular disease states 3 microvascular disease states Systolic blood pressure (per 1 SD increase) Diastolic blood pressure (per 1 SD increase) LDL cholesterol (per 1 SD increase) BMI (per 1 SD increase) HbA_{1c} (per 1 SD increase) Smoking history

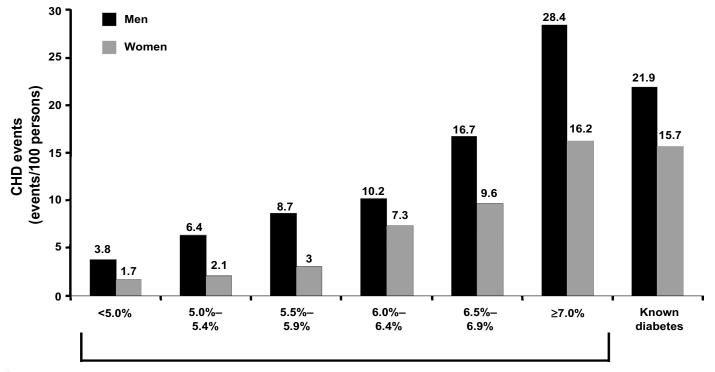


4:588-97


В

1 microvascular disease state 2 microvascular disease states 3 microvascular disease states Systolic blood pressure (per 1 SD increase) Diastolic blood pressure (per 1 SD increase) LDL cholesterol (per 1 SD increase) BMI (per 1 SD increase) HbA_{1c} (per 1 SD increase) Smoking history

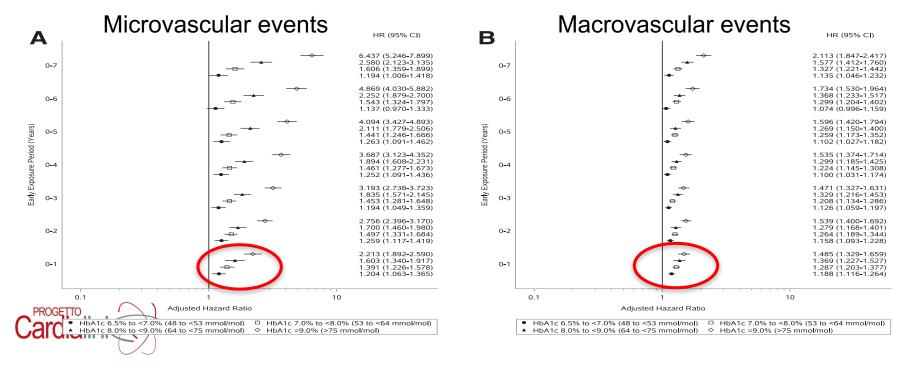
0.5



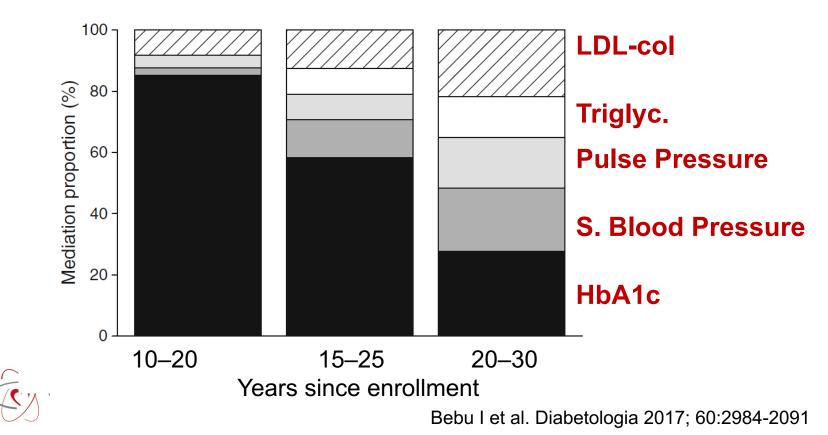
Microvascular disease and risk of cardiovascular events among individuals with type 2 diabetes: a population-level cohort study.

Brownrigg JR et al. Lancet Diabetes Endocrinol 2016;4:588-97.

Glycated hemoglobin (HbA1c) and heart disease in type 2 diabetes



HbA_{1c} concentration^a


Diabetes Metab Syndr Obes. 2010;3:227-42

The Legacy Effect in Type 2 Diabetes: Impact of Early Glycemic Control on Future Complications (The Diabetes & Aging Study) Neda Laiteerapong,¹ Sandra A. Ham,² Yue Gao,¹ Howard H. Moffet,³ Jennifer Y. Liu,³ Elbert S. Huang,¹ and Andrew J. Karter³

Diabetes Care 2019;42:416-426 | https://doi.org/10.2337/dc17-1144

Decomposition of the total effect of HbA1c on CVD risk into the direct and indirect effects

ORIGINAL ARTICLE

Rawshani A et al. *N Engl J Med* 2018;379:633–644 Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes

Mortality

Acute myocardial infarction

	Hazard Ratio (95% CI)		Hazard Ratio (95%	6 CI)
Control		Control		
≥80 yr	Reference	≥80 yr	<u>ن</u>	Reference
≥65 to <80 yr	 Reference 	≥65 to <80 yr	6	Reference
≥55 to <65 yr	Reference	≥55 to <65 yr	<u>ن</u>	Reference
~55 vr	A Reference	~55.vr	<u> </u>	Reference
No risk factors		No risk factors		
≥80 yr =	• 0.99 (0.84–1.17)	≥80 yr ——————	÷-	0.72 (0.49-1.07)
≥65 to <80 yr	• 1.01 (0.92–1.12)	≥65 to <80 yr	1	0.80 (0.69-0.93)
≥55 to <65 yr	1.15 (1.00–1.34)	≥55 to <65 yr		0.93 (0.73-1.18)
<55 yr	+	<55 yr		0.91 (0.62–1.35)
I KISK JACLOF		I KISK TACLOF		
≥80 yr	0.94 (0.88–1.00)	≥80 yr	<u>.</u>	1.05 (0.93-1.19)
≥65 to <80 yr	1.05 (1.02–1.09)	≥65 to <80 yr		1.05 (0.97-1.14)
≥55 to <65 yr	1.23 (1.16–1.31)	≥55 to <65 yr	ie	1.14 (1.04-1.25)
<55 yr	1.56 (1.34–1.81)	<55 yr	l [™] - ⇔ -	1.46 (1.26-1.69)
2 Risk factors		2 Risk factors		()
≥80 yr	• 0.99 (0.94–1.04)	≥80 yr	•	1.38(1.27 - 1.49)
≥65 to <80 yr	1.17 (1.13–1.20)	≥65 to <80 yr	À	1.44 (1.39–1.50)
≥55 to <65 yr	1.32 (1.27–1.38)	≥55 to <65 yr		1.54 (1.44-1.65)
<55 yr	1.68 (1.56–1.80)	<55 yr	· •	2.08 (1.90-2.27)
3 Risk factors		3 Risk factors		
≥80 yr	1.13 (1.06–1.21)	≥80 yr	•	1.78 (1.60-1.98)
≥65 to <80 yr	1.46 (1.42–1.50)	≥65 to <80 yr		2.11 (2.02-2.20)
≥55 to <65 yr	1.63 (1.55–1.71)	≥55 to <65 yr	i 🍝	2.16 (2.02-2.31)
<55 yr	2.21 (2.05–2.37)	<55 yr	· •	3.02 (2.80-3.27)
4 Risk factors	· · · · · · · · · · · · · · · · · · ·	4 Risk factors	·	()
≥80 vr	••• <u>1.47 (1.28–1.70)</u>	≥80 yr		2.32 (1.78-3.01)
≥65 to <80 yr	2.10 (1.96–2.26)	≥65 to <80 yr	· · · · · · · · · · · · · · · · · · ·	2.87 (2.62-3.14)
≥55 to <65 yr	2.53 (2.37–2.70)	≥55 to <65 yr	*	3.32 (3.02-3.66)
<55 vr		<55 vr	· · · · ·	4 56 (4 01 - 5 18)
5 Risk factors		5 Risk factors		
≥80 yr	1.39 (0.51-3.80)	≥80 yr	·	3.19 (1.23-8.28)
≥65 to <80 yr		≥65 to <80 yr	· · · · · · · · · · · · · · · · · · ·	4.60 (3.37-6.29)
≥55 to <65 yr		≥55 to <65 yr		4.84 (3.78-6.21)
<55 yr	4.99 (3.43-7.27)	<55 yr	_	7.69 (5.02-11.77)
	1 2 3 4 6 8		1 2 3 4 6 8 10	
	1 ζ 3 4 0 δ		1 2 3 4 6 8 10	

2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD

Table 7Cardiovascular risk categories in patients withdiabetesa

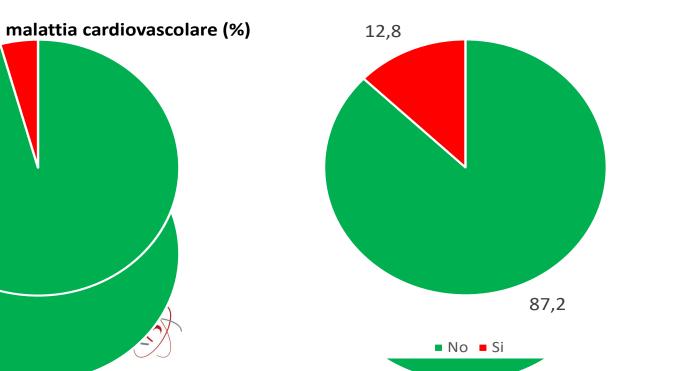
Very high risk	Patients with DM and established CVD						
	or other target organ damage ^b						
	or three or more major risk factors ^c						
	or early onset T1DM of long duration (>20 years)						
High risk	Patients with DM duration ≥10 years without tar-						
	get organ damage plus any other additional risk factor	0					
Moderate risk	Young patients (T1DM aged <35 years or T2DM aged <50 years) with DM duration <10 years, without other risk factors	© ESC 2019					

CV = cardiovascular; CVD = cardiovascular disease; DM = diabetes mellitus; T1DM = type 1 diabetes mellitus; T2DM = type 2 diabetes mellitus.

^aModified from the 2016 European Guidelines on cardiovascular disease prevention in clinical practice.²⁷

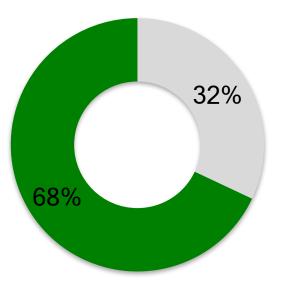
^bProteinuria, renal impairment defined as eGFR \geq 30 mL/min/1.73 m², left ventricular hypertrophy, or retinopathy.

^cAge, hypertension, dyslipidemia, smoking, obesity.


Soggetti con storia di malattia

Annali

DI QUALITÀ DELL'ASSISTENZA AL DIABETE IN ITAI


a di ictus è risultata dell'1.2% tra i pazienti con DV1 e del 3.5% fra quelli con DM2 pggetti con DM1 e 14840 con DM2.

DM2

A majority of people with type 2 diabetesdo not have established CVD, most are at risk for a CV event

CVD No CVD

Einarson et al. Cardiovasc Diabetol (2018) 17:83; ADA. Diabetes Care 2019; 42 (suppl. 1): S103-S123

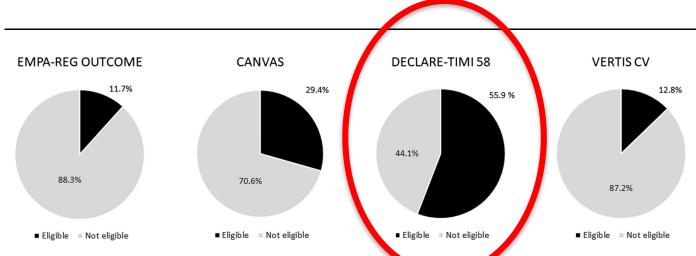
ORIGINAL RESEARCH

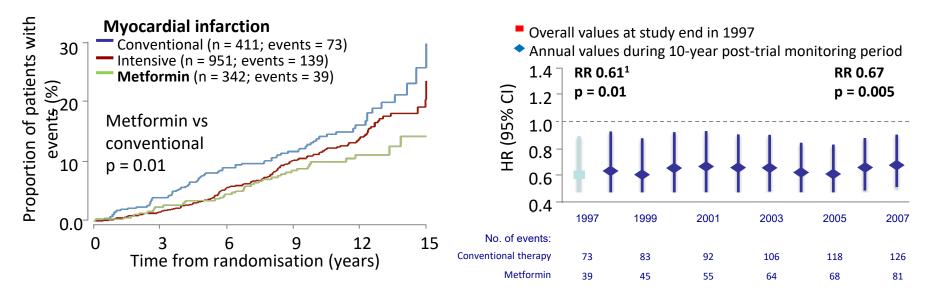
Generalizability of Cardiovascular Safety Trials on SGLT2 Inhibitors to the Real World: Implications for Clinical Practice

Antonio Nicolucci 💿 · Riccardo Candido · Domenico Cucinotta ·

Giusi Graziano · Alberto Rocca · Maria C. Rossi · Franco Tuccinardi ·

Valeria Manicardi

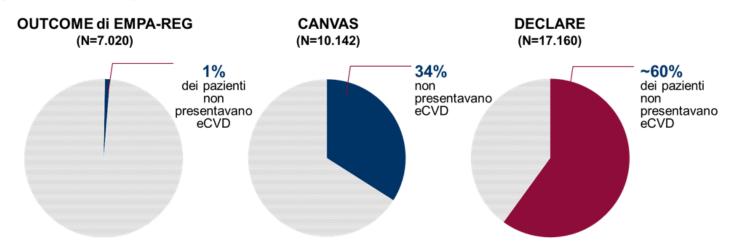



Fig. 1 Percentages of adults with type 2 diabetes in the AMD Annals latabase who would have met inclusion criteria for cardiovascular outcomes trials with empagliflozin, canagliflozin, dapagliflozin, or ertugliflozin

UKPDS 34 provides some evidence for beneficial CV effects of metformin in overweight patients

Significant reduction in MI maintained over 10 years' follow-up³

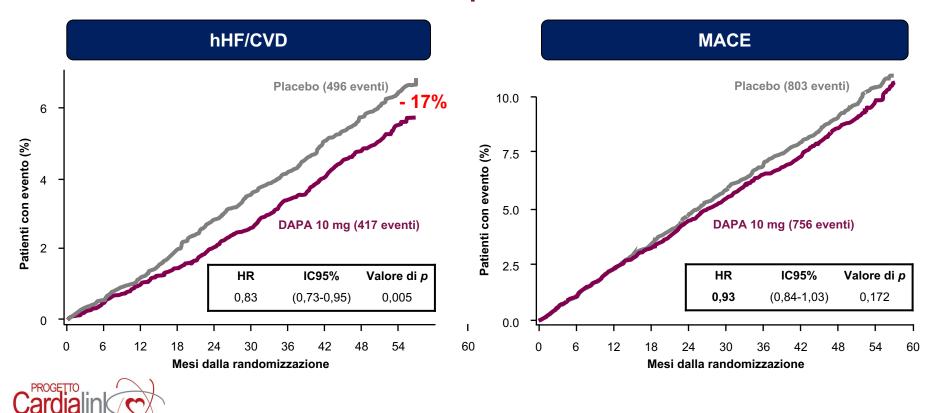
Risk of MI is 39% lower with metformin vs conventional therapy in obese patients^{1,2}



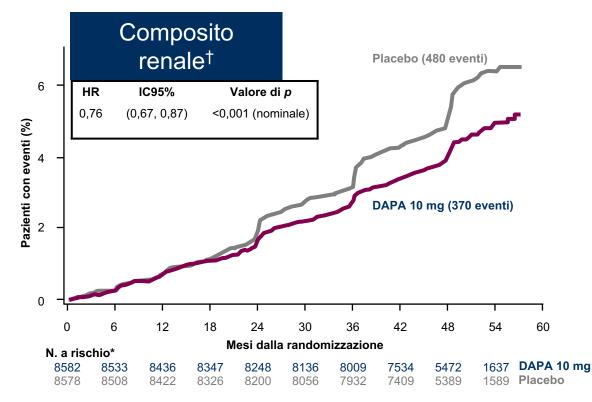
CV, cardiovascular

1. UKPDS 34. *Lancet* 1998;352:854–65. 2. http://www.medicines.org.uk/emc/medicine/23244/SPC. 3. Holman et al. *N Engl J Med* 2008;359:1577–89.

Per gli SGLT2i lo studio DECLARE ha la più alta rappresenzanza di pazienti con DM2 in prevenzione primaria


La percentuale di pazienti che non presentavano patologie CV conclamate varia nell'ambito dei tre studi sugli outcome CV degli SGLT2i

CV, cardiovascolare; SGLT2, cotrasportatore di sodio e glucosio 2; T2D, diabete di tipo 2; eCVD, patologia CV conclamata.

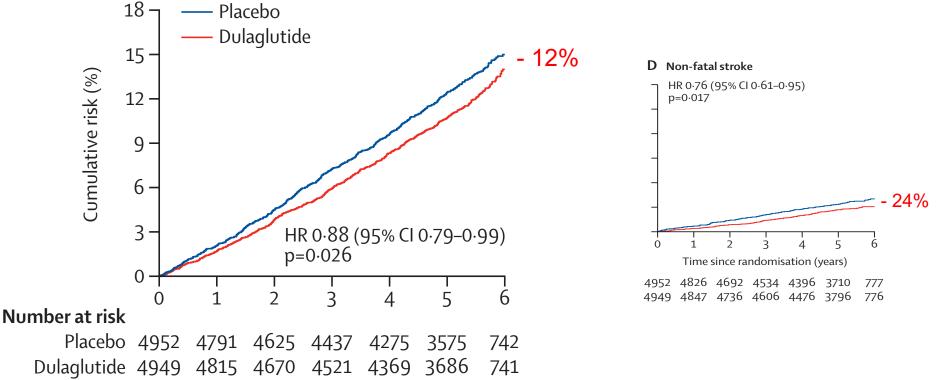

1. Zinman B, et al. N Engl J Med 2015;373:2117–2128;; 2. Neal B, et al. N Engl J Med 2017; DOI: 10.1056/NEJMoa1611925;3. Sattar Diabetologia (2013) 56:686–6954. Raz I, et al. Diabetes Obes Metab 2018. http://dx.doi.org/10.1111/dom.13217

dapagliflozin hanno mostrato una riduzione significativa di hHF/morte CV e un minor numero di eventi MACE rispetto a placebo

Wiviott SD et al. N Engl J Med. 2019;380(4):347-357

Dapagliflozin ha rallentato la progressione della malattia renale nei pazienti con T2D con una funzionalità renale relativamente buona al basale

Wiviott SD et al. N Engl J Med. 2019;380(4):347-357

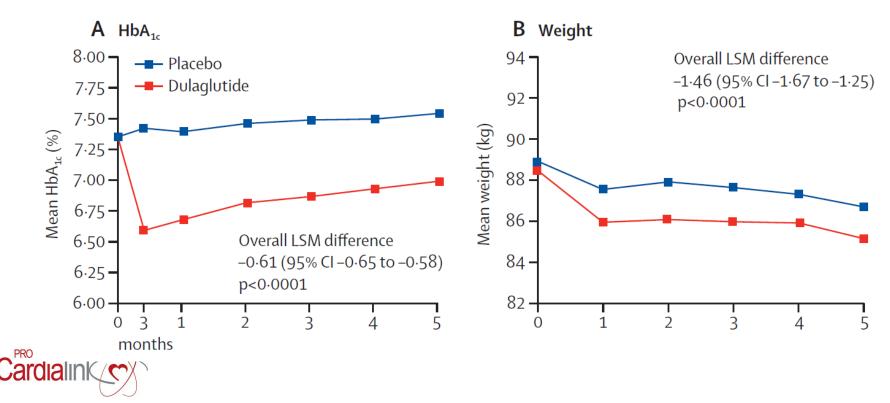

Implications of the REWIND Findings

	ELIXA	LEADER	SUSTAIN 6	EXSCEL	HARMONY	REWIND
N	6068	9340	3297	14752	9463	9901
Drug Tested	Lixi/d	Partici	pants were	e simila	r to the	Dula/wk
Prior CVD	100%					31%
Mean Age	60 y	sorts of	ambulato	ry patie	nts with	66 y
Women	30%	tuno 2		ick foot	arcusha	46%
Median F/U	2.1 y	type z	DM & CV r	ISK IACU	ors who	5.4 y
DM Duration	9.2 y	are r	outinely se	een in cl	linical	10.5 y
Baseline A1c	7.7%		•	_		7.3%
Baseline eGFR	76		pract	ice		77
Insulin Use	39%	45%	58%	46%	59%	24%

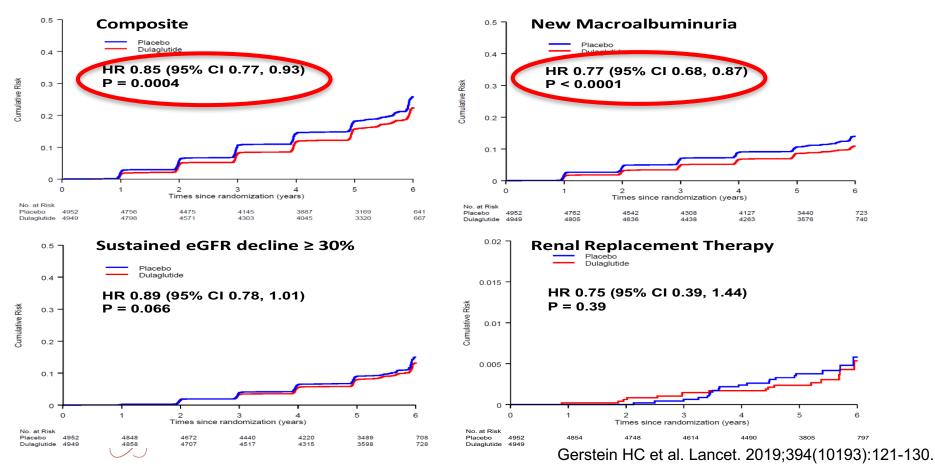
*GLP-1 RA CVOT trials cannot be directly compared due to differences in study design, population and key inclusion/exclusion criteria

Dulaglutide's Effect on the CV Composite Primary Outcome: 1st Occurrence of Nonfatal MI, Nonfatal Stroke, CV Death

Gerstein HC et al. Lancet. 2019;394(10193):121-130.

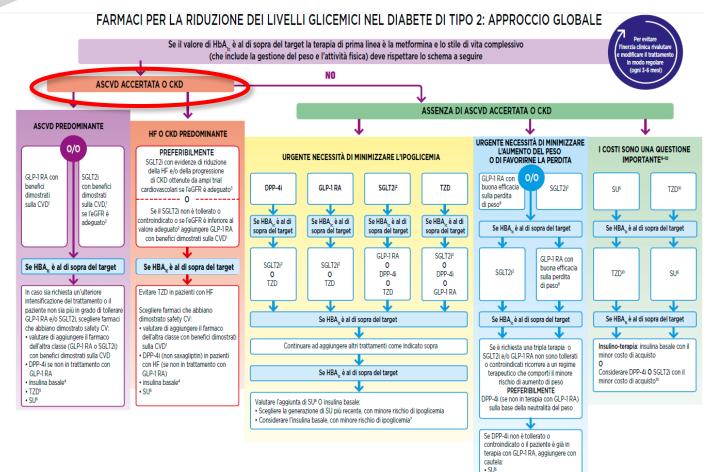

CV Composite in Prespecified Subgroups

	Dulaglut	ide	Placebo	0		Hazard Ratio	P value for
Subgroups	Events/Total (%)	Rate/100 py	Events/Total (%)	Rate/100 py		95% CI	Interaction
History of CVD							
Prior CVD	280 /1560 (17.9)	3.7	315 /1554 (20.3)	4.2		0.87 (0.74-1.02)	
No Prior CVD	277 /3093 (8.9)	1.7	317 /3128 (10.1)	2.0		0.87 (0.74-1.02)	0.970
Baseline HbA1c							
≥ 7.2%	328 /2610 (12.6)	2.5	373 /2603 (14.3)	2.9		0.86 (0.74-1.00)	
< 7.2%	263 /2329 (11.3)	2.2	289 /2334 (12.4)	2.4		0.90 (0.76-1.06)	0.746
BMI (kg/m^2)							
≥ 32	254 /2281 (11.1)	2.1	308 /2302 (13.4)	2.6		0.82 (0.69-0.96)	
< 32	340 /2667 (12.7)	2.5	355 /2650 (13.4)	2.7		0.94 (0.81-1.09)	0.214
Region							
Europe	248 /2174 (11.4)	2.2	315 /2165 (14.5)	2.9		0.77 (0.65-0.90)	
Latin America	191 /1511 (12.6)	2.6	190 /1510 (12.6)	2.6		0.99 (0.81-1.21)	
USA/Canada	132 /1032 (12.8)	2.4	117 /1039 (11.3)	2.1		1.14 (0.89-1.47)	
Asia Pacific	23 / 232 (9.9)	1.9	41 / 238 (17.2)	3.5 🛶		0.54 (0.32-0.89)	
			()	[
				0.50	1.0	2.0	
					HR (95% CI)		
in HC, et al. <i>Lancet.</i> 2019	9;394(10193):121-130.						RFM


Dulaalutide CV Outcomes Trial

Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial

Hertzel C Gerstein, Helen M Colhoun, Gilles R Dagenais, Rafael Diaz, Mark Lakshmanan, Prem Pais, Jeffrey Probstfield, Jeffrey S Riesmeyer, Matthew C Riddle, Lars Rydén, Denis Xavier, Charles Messan Atisso, Leanne Dyal, Stephanie Hall, Purrima Rao-Melacini, Gloria Wong, Alvaro Avezum, Jan Basile, Namsik Chung, Ignacio Conget, William C Cushman, Edward Franek, Nicolae Hancu, Markolf Hanefeld, Shaun Holt, Pert Jansky, Matyas Keltai, Fernando Lanas, Lawrence A Leiter, Patricia Lopez-Jaramillo, Ernesto German Cardona Munoz, Valdis Pirags, Nana Pogosova, Peter J Raubenheimer, Jonathan E Shaw, Wayne H-H Shev, Theodora Temelkova-Kurktschiev, for the REWIND Investigators⁺


REWIND: Renal Outcomes

Effects of glucagon-like peptide-1 receptor agonists on major cardiovascular events in patients with Type 2 diabetes mellitus with or without established cardiovascular disease: a meta-analysis of randomized controlled trials

Subgroup	GLP-1 recept agonist	Placebo	Ha	azard Ratio	HR	95%-CI			HR CRF / HR CVD	95%-CI	Weigh
CVD without prior MI/Stroke	322/1865 (17%)	372/1827 (20%)		-	0.85	[0.73; 0.99]		Ш			
CRF	128/1265 (10%)	123/1300 (9%)			1.08	[0.84; 1.39]					
LEADER (i)								-	1.27	[0.95; 1.70]	25.99
CVD with prior MI/Stroke	158/1538 (10%)	199/1545 (13%)			0.76	[0.62; 0.94]					
CRF	128/1265 (10%)	123/1300 (9%)			1.08	[0.84; 1.39]					
LEADER (ii)								-	1.42	[1.03; 1.96]	24.8%
CVD	97/1262 (8%)	124/1271 (10%)		-	0.78	[0.60; 1.01]					
CRF	11/386 (3%)	22/378 (6%)		_	0.48	[0.23; 1.00]					
SUSTAIN								•	0.62	[0.28; 1.34]	4.19
CVD	280/1560 (18%)	315/1554 (20%)		-	0.87	[0.74; 1.02]					
CRF	277/3093 (9%)	317/3128 (10%)		-	0.87	[0.74; 1.02]					
REWIND								+	1.00	[0.80; 1.25]	39.3
CVD	722/5394 (13%)	786/5388 (15%)		-	0.90	[0.82; 0.99]					
CRF	117/1962 (6%)	119/2008 (6%)		+	0.99	[0.77; 1.27]					
EXSCEL								-	1.10	[0.84; 1.44]	29.0
CVD	57/1350 (4%)	68/1345 (5%)			0.83	[0.58; 1.19]					
CRF	4/241 (2%)	8/247 (3%)		_	0.51	[0.15; 1.73]					
PIONEER								•	- 0.61	[0.17; 2.16]	1.69
Random effects model Heterogeneity: $l^2 = 9\%$, $\tau^2 = 0.0$ Heterogeneity: $l^2 = 33\%$, $\tau^2 = 0.0$							((I) 1.06 (II) 1.08	[0.85; 1.34] [0.79; 1.46],	
			1 1				1				

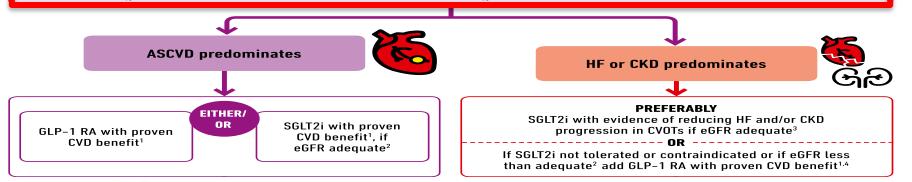
Diabetologia. 2018 Dec;61(12):2461-2498

• TZD⁵
 • Insulina basale

CHOOSING GLUCOSE-LOWERING MEDICATION IN THOSE WITH ESTABLISHED ATHEROSCLEROTIC CARDIOVASCULAR DISEASE (ASCVD) OR CHRONIC KIDNEY DISEASE (CKD)

Use metformin unless contraindicated or not tolerated

If not at HbA_{1c} target:


- Continue metformin unless contraindicated (remember to adjust dose/stop metformin with declining eGFR)
- Add SGLT2i or GLP-1 RA with proven cardiovascular benefit¹ (see below)

If at HbA_{1c} target:

If already on dual therapy, or multiple glucose-lowering therapies and not on an SGLT2i or GLP-1 RA, consider switching to one of these
agents with proven cardiovascular benefit¹ (see below)

OR reconsider/lower individualized target and introduce SGLT2i or GLP-1 RA

OR reassess HbA_{1c} at 3-month intervals and add SGLT2i or GLP-1 RA if HbA_{1c} goes above target

Diabetologia. 2018 Dec;61(12):2461-2498

Diabetologia (2020) 63:221–228 https://doi.org/10.1007/s00125-019-05039-w

CONSENSUS REPORT UPDATE

2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)

John B. Buse¹ · Deborah J. Wexler^{2,3} · Apostolos Tsapas⁴ · Peter Rossing^{5,6} · Geltrude Mingrone^{7,8,9} · Chantal Mathieu¹⁰ · David A. D'Alessio¹¹ · Melanie J. Davies¹²

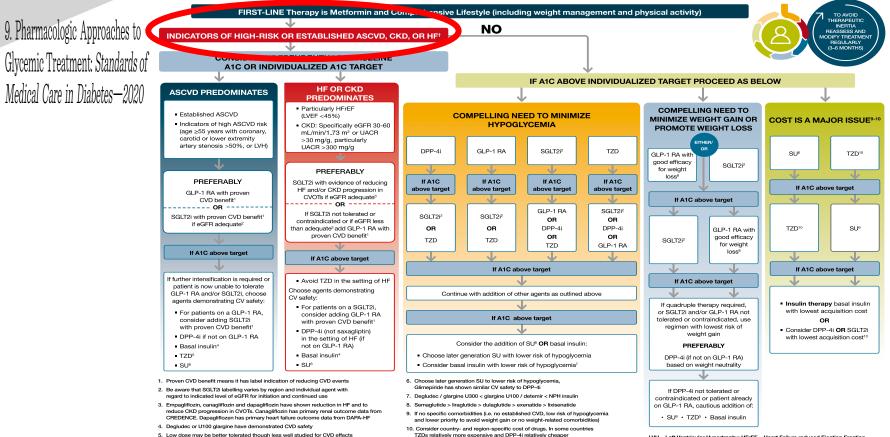
We now also suggest that to reduce risk of MACE, GLP-1 receptor agonists can also be considered in patients with type 2 diabetes without established CVD with indicators of high risk, specifically, patients aged 55 years or older with coronary, carotid or lower extremity artery stenosis >50%, left ventricular hypertrophy, an eGFR <60 ml min⁻¹ [1.73 m]⁻² or albuminuria.

Diabetologia (2020) 63:221–228 https://doi.org/10.1007/s00125-019-05039-w

CONSENSUS REPORT UPDATE

2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)

John B. Buse¹ · Deborah J. Wexler^{2,3} · Apostolos Tsapas⁴ · Peter Rossing^{5,6} · Geltrude Mingrone^{7,8,9} · Chantal Mathieu¹⁰ · David A. D'Alessio¹¹ · Melanie J. Davies¹²


To date, the level of evidence to support the use

of GLP-1 receptor agonists for primary prevention

is strongest for dulaglutide but lacking

for other GLP-1 receptor agonists.

LVH = Left Ventricular Hypertrophy; HFrEF = Heart Failure reduced Ejection Fraction UACR = Urine Albumin-to-Creatinine Ratio: LVEF = Left Ventricular Ejection Fraction

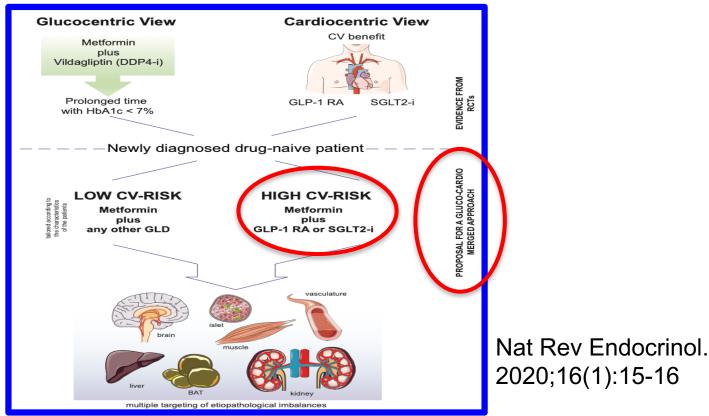
Figure 9.1—Glucose-lowering medication in type 2 diabetes: overall approach. For appropriate context, see Fig. 4.1. ASCVD, atherosclerotic cardiovascular disease; CKD, chronic kidney disease; CV, cardiovascular;

† Actioned whenever these become new clinical considerations regardless of background glucose-lowering medications.

Control ovascular of lisease; CVOTs, cardiovascular outcomes trials; DPP-4i, dipeptid/y leptid/ase 4 inhibitor; eGFR, estimated glomerular filtration rate; GLP-1 RA, glucagon-like peptide 1 receptor agonist; HF, card ailure; SGLT2i, sodium-glucose cotransporter 2 inhibitor; SU, sulfonylurea; TZD, thiazolidinedione. Adapted from Davies and colleagues (33,34).

Diabetes Care 2020;43(Suppl. 1):S98-S11

Decision Algorithm for Prescribing SGLT2 Inhibitors and GLP-1 Receptor Agonists for Diabetic Kidney Disease


Jiahua Li (10, 1,2,3 Oltjon Albajrami,^{2,4} Min Zhuo,^{1,3,5,6} Chelsea E. Hawley,^{6,7} and Julie M. Paik^{1,2,3,6,7}

eGFR	UACR <30 mg/g	UACR 30–299 mg/g	UACR ≥300 mg/g				
>60 ml/min per 1.73 m²	SGLT2i or GLP-1 RAª	SGLT2i is preferred. GLP-1 RA as an alternative if SGLT2i is contraindicated or not tolerated, and as an add-on for uncontrolled metabolic risk ^b	SGLT2i should be initiated. GLP-1 RA as an add-on for uncontrolled metabolic risk°				
30–60 ml/min per 1.73 m²	SGLT2i is preferred contraindicated or metabolic risk ^b	SGLT2i should be initiated. GLP-1 RA as an add-on for uncontrolled metabolic risk°					
15–29 ml/min per 1.73 m²	GLP-1 RA (dulaglutide) is preferred. Initiation of SGLT2i is currently contraindicated ^d						

CJASN 15: •••-, 2020. doi: https://doi.org/10.2215/CJN.02690320

QUANDO E COME INIZIARE LA TERAPIA ANTIDIABETICA NEL PAZIENTE CON MULTIPLI FATTORI DI RISCHIO?

