

Creazione dell'interazione

DIABETOLOGO e CARDIOLOGO nel paziente con

diabete mellito di tipo 2

con multipli fattori di rischio cardiovascolare o malattia cardiovascolare conclamata

10 luglio 2020

Il ruolo della diagnostica di laboratorio nella valutazione del rischio cardiovascolare nel paziente con diabete tipo 2

Prof. Alberto Margonato

Responsabile dell'Unità Operativa di Cardiologia Clinica all'IRCCS Ospedale San Raffaele di Milano

Professore ordinario di Cardiologia all'Università Vita-Salute San Raffaele.

Hazard ratios (HRs) for vascular outcomes in people with versus without diabetes at baseline, based on analyses of 530 083 patients

	Number of cases	HR (95%	CI)	I ² (95% CI)
Coronary heart disease*	26 505	-	2.00 (1.83-2.19)	64 (54–71)
Coronary death	11556	_ _	2.31 (2.05–2.60)	41 (24–54)
Non-fatal myocardial infarction	14741	-■-	1.82 (1.64–2.03)	37 (19–51)
Stroke subtypes*				
Ischaemic stroke	3 799		2.27 (1.95-2.65)	1 (0-20)
Haemorrhagic stroke	1 183		1.56 (1.19–2.05)	0 (0–26)
Unclassified stroke	4 973		1.84 (1.59–2.13)	33 (12–48)
Other vascular deaths	3 826		1.73 (1.51–1.98)	0 (0–26)
	1	2 4		

CI = confidence interval. *Includes both fatal and non-fatal events

Recommendations for glycaemic control in individuals with DM

Recommendations	Class	Level	European Socie of Cardiology
It is recommended to apply tight glucose control, targeting a near-normal HbA1c (<7.0% or <53 mmol/mol), to decrease microvascular complications in DM.	1	Α	
It is recommended that HbA1ctargets are individualized according to duration of DM, comorbidities, and age.	I	С	
Avoidance of hypoglycaemia is recommended.	I	С	
The use of structured self-monitoring of blood glucose and/or continuous glucose monitoring should be considered to facilitate optimal glycaemic control.	lla	А	
An HbA1c target of <7.0% (or <53 mmol/mol) should be considered for the prevention of macrovascular complications in individuals with DM.	lla	С	Ø ESC

with EASD (European Heart Journal 2019 - doi/10.1093/eurheartj/ehz486)

ESC

Recommendations for the treatment of dyslipidaemias in diabetes mellitus

Recommendations	Classa	Level ^b
In patients with T2DM at very-high risk ^c , an LDL-C reduction of ≥50% from baseline and an LDL-C goal of <1.4 mmol/L (<55 mg/dL) is recommended. 34,418,432	ı	A
In patients with T2DM at high risk, ^c an LDL-C reduction of ≥50% from baseline and an LDL-C goal of <1.8 mmol/L (<70 mg/dL) is recommended. ⁴¹⁸	1	A
Statins are recommended in patients with T1DM who are at high or very-high risk. ^{c 427}	1	A
Intensification of statin therapy should be considered before the introduction of combination therapy.	lla	с
If the goal is not reached, statin combination with ezetimibe should be considered. 33,299	lla	В
Statin therapy is not recommended in pre- menopausal patients with diabetes who are considering pregnancy or are not using adequate contraception.	Ш	с
Statin therapy may be considered in both T1DM and T2DM patients aged ≤30 years with evidence of end organ damage and/or an LDL-C level >2.5 mmol/L, as long as preg- nancy is not being planned.	IIb	с

ESC Guidelines 2019 for management of dyslipidaemias

- The addition of circulating biomarkers for CV risk assessment has "limited" clinical value
- C-reactive protein or fibrinogen
- hs-TnT
- N-terminal pro-B-type natriuretic peptide (NT-proBNP)
- Albuminuria

C-reactive protein or fibrinogen

 In patients with DM without known CVD, measurement of C-reactive protein or fibrinogen

(inflammatory markers) provides minor incremental value to current risk assessment

ORIGINAL ARTICLE

C-Reactive Protein, Fibrinogen, and Cardiovascular Disease Prediction

NEJM 2012

The Emerging Risk Factors Collaboration*

ABSTRACT

A C-Reactive Protein

Subgroup	CVD Cases							C-Index Change (95% CI)	P Value for Heterogeneity
Overall	13,568			-				0.0039 (0.0028 to 0.0050)	NA
Sex									< 0.001
Male	5,755			_	_			0.0077 (0.0058 to 0.0096)	
Female	4,535		-	-				0.0007 (-0.0007 to 0.0021)	
Smoking status									< 0.001
Not current	8,880		-	-				0.0027 (0.0015 to 0.0039)	
Current	4 688				_			0.0089 (0.0064 to 0.0115)	
History of diabetes							П		0.48
No	11,418			-				0.0042 (0.0029 to 0.0055)	
Yes	1.580		_	_				0.0026 (-0.0015 to 0.0067)	
Predicted 10-yr CVD risk									0.04
<10%	1,602		-	-	_			0.0029 (-0.0023 to 0.0081)	
10% to <20%	3,903			-	-			0.0116 (0.0065 to 0.0166)	
≥20%	7,417	-0.005	0.000	0.005	0.010	0.015	0.020	0.0095 (0.0070 to 0.0121)	

C-Index Change (95% CI), with Addition of Log_e CRP

ORIGINAL ARTICLE

C-Reactive Protein, Fibrinogen, and Cardiovascular Disease Prediction

NEJM 2012

The Emerging Risk Factors Collaboration*

ABSTRACT **B** Fibrinogen C-Index Change P Value for CVD Subgroup Cases (95% CI) Heterogeneity Overall 12,021 0.0027 (0.0018 to 0.0036) NA 0.001 Sex Male 4,438 0.0043 (0.0029 to 0.0057) Female 3,368 0.0011 (-0.0004 to 0.0025) Smoking status 0.15 7,819 0.0024 (0.0013 to 0.0036) Not current 0.0041 (0.0021 to 0.0061) Current 4 202 History of diabetes 0.50 0.0026 (0.0015 to 0.0037) No 10,142 1.868 0.0037 (0.0007 to 0.0068) Predicted 10-yr CVD risk 0.07 <10% 1,509 0.0015 (-0.0034 to 0.0064) 0.0094 (0.0045 to 0.0144) 10% to < 20% 3,301 ≥20% 6,233 0.0068 (0.0044 to 0.0093) -0.005 0.000 0.005 0.010 0.015 0.020

C-Index Change (95% CI), with Addition of Fibrinogen

ORIGINAL ARTICLE

C-Reactive Protein, Fibrinogen, and Cardiovascular Disease Prediction

NEJM 2012

CONCLUSIONS

In a study of people without known cardiovascular disease, we estimated that under current treatment guidelines, assessment of the CRP or fibrinogen level in people at intermediate risk for a cardiovascular event could help prevent one additional event over a period of 10 years for every 400 to 500 people screened. (Funded by the British Heart Foundation and others.)

C-Index Change (95% CI), with Addition of Fibrinogen

The addition of **hs-TnT** to conventional risk factors has shown incremental discriminative power.

Contents lists available at ScienceDirect

Atherosclerosis

journal homepage: www.elsevier.com/locate/atherosclerosis

Comparison of non-traditional biomarkers, and combinations of biomarkers, for vascular risk prediction in people with type 2 diabetes: The Edinburgh Type 2 Diabetes Study

Anna H. Price ^{a, *}, Christopher J. Weir ^{a, b}, Paul Welsh ^c, Stela McLachlan ^a, Mark W.J. Strachan ^d, Naveed Sattar ^c, Jackie F. Price ^{a, **}

^d Metabolic Unit, Western General Hospital, Edinburgh, Scotland, UK

^a Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK

b Edinburgh Clinical Trials Unit, University of Edinburgh, Scotland, UK

^c Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, UK

The Edinburg Type 2 diabetes study

Adding biomarkers to the basic model (all columns refer to total population with complete case analysis, $n = 989^a$, except for final column which gives c-statistics for subpopulation with no CVD at baseline).

Predictors in the model, additional to conventional risk factors ^b	OR for a one SD increase in biomarker (95% CI)	C statistic (95% CI)	p-value for comparison with basic model) NR —no event ^c (%)	NRI	Goodness of fit (Hosmer-Lemeshow p value)	C statistic (95% CI) for sub-population with no baseline CVD
Basic model	_	0.722 (0.681, 0.763)					0.97	0.685 (0.623, 0.747)
ABI	0.86 (0.73, 1.00)	0.725 (0.684, 0.766)	0.44	-2.2	2.0	0.015	0.83	0.691 (0.628, 0.753)
NT-proBNP	123 (1.02, 1.49)	0.726 (0.685, 0.767)	0.39	-2.2	1.5	-0.007	0.81	0.684 (0.623, 0.745)
hs-cTnT	1.35 (1.13, 1.61)	0.732 (0.690, 0.774)	0.19	-1.6	2.2	0.006	0.09	0.685 (0.623, 0.747)
Gamma-GT	1.16 (0.98, 1.37)	0.726 (0.685, 0.766)	0.40	-2.7	1.1	-0.016	0.40	0.689 (0.626, 0.751)
g	1.07 (0.90, 1.27)	0.724 (0.683, 0.765)	0.29	0.5	1,2	0.018	0.90	0.693 (0.631, 0.755)
Top five models chosen (all-subsets regression)								
ABI, hs-cTnT, GGT	_	0.740 (0.699, 0.781)	0.04	-1.1	4.4	0.033	0.15	0.700 (0.637, 0.762)
ABI, hs-cTnT, GGT, proBNP	_	0.740 (0.699, 0.780)	0.06	-2.7	3.5	0.008	0.34	0.701 (0.640, 0.763)
hs-cTnT, GGT, proBNP	_	0.738 (0.697, 0.779)	0.07	-1.6	5.1	0.035	0.47	0.696 (0.634, 0.758)
ABI, hs-cTnT	_	0.735 (0.694, 0.776)	0.12	-3.2	5.4	0.021	0.35	0.695 (0.633, 0.756)
hs-cTnT, GGT	_	0.738 (0.697, 0.778)	0.06	-1.1	3.9	0.028	0.21	0.694 (0.632, 0.756)
Full model								
ABI, hs-cTnT, GGT, proBNP, g	_	0.740 (0.699, 0.781)	0.06	-1.6	5.2	0.036	0.39	0.706 (0.644, 0.767)

^a A complete case analysis was carried out, n = 989 (n = 643, events = 83 for subpopulation with no CVD at baseline).

 $^{^{}c}$ n = 186 for event, n = 803 for no event.

^b Conventional risk factors: age, sex, smoking, atrial fibrillation, chronic kidney disease, arthritis, hypertension, BMI, sBP, total:HDL cholesterol, social status, baseline CVD status (MI, angina, TIA and stroke) and lipid lowering medication.

The Edinburg Type 2 diabetes study

Adding biomarkers to the basic model (all columns refer to total population with complete case analysis, n = 9893 except for final column which gives c-statistics for subpopulation with no CVD at I Conclusions: Individually, hs-cTnT appeared to be the most promising biomarker in terms of improving

Predictors in the model. additional to conventional risk factorsb

vascular risk prediction in people with type 2 diabetes, over and above traditional risk factors incorporated in the QRISK2 score. Combining several non-traditional biomarkers added further predictive value, and this approach merits further investigation when developing cost effective risk prediction tools for use in clinical practice.

Basic model	_	0.722 (0.681, 0.763)			0.97	0.685 (0.623, 0.747)
ABI	0.86 (0.7)	3, 1.00) 0.725 (0.684, 0.766) 0.44	-2.2	2.0	0.015 0.83	0.691 (0.628, 0.753)
NT-proBNP	1.23 (1.0)	2. 1.49) 0.726 (0.685, 0.767) 0.39	-2.2	1.5	-0.007 0.81	0.684 (0.623, 0.745)
hs-cTnT	1.35 (1.1)	3, 1.61) 0.732 (0.690, 0.774) 0.19	-1.6	2.2	0.006 0.09	0.685 (0.623, 0.747)
Gamma-GT	1.16 (0.9)	8, 1.37) 0.726 (0.685, 0.766) 0.40	-2.7	1.1	-0.016 0.40	0.689 (0.626, 0.751)
g	1.07 (0.9	0, 1.27) 0.724 (0.683, 0.765) 0.29	0.5	1.2	0.018 0.90	0.693 (0.631, 0.755)
Top five models chosen						
(all-subsets regression)						
ABI, hs-cTnT, GGT	_	0.740 (0.699, 0.781) 0.04	-1.1	4.4	0.033 0.15	0.700 (0.637, 0.762)
ABI, hs-cTnT, GGT, proBNP	_	0.740 (0.699, 0.780) 0.06	-2.7	3.5	0.008 0.34	0.701 (0.640, 0.763)
hs-cTnT, GGT, proBNP	_	0.738 (0.697, 0.779) 0.07	-1.6	5.1	0.035 0.47	0.696 (0.634, 0.758)
ABI, hs-cTnT	_	0.735 (0.694, 0.776) 0.12	-3.2	5.4	0.021 0.35	0.695 (0.633, 0.756)
hs-cTnT, GGT	_	0.738 (0.697, 0.778) 0.06	-1.1	3.9	0.028 0.21	0.694 (0.632, 0.756)
Full model						
ABI, hs-cTnT, GGT, proBNP	, g -	0.740 (0.699, 0.781) 0.06	-1.6	5.2	0.036 0.39	0.706 (0.644, 0.767)

^a A complete case analysis was carried out, n = 989 (n = 643, events = 83 for subpopulation with no CVD at baseline).

b Conventional risk factors: age, sex, smoking, atrial fibrillation, chronic kidney disease, arthritis, hypertension, BMI, sBP, total:HDL cholesterol, social status, baseline CVD status (MI, angina, TIA and stroke) and lipid lowering medication.

c n = 186 for event, n = 803 for no event.

The prognostic value of N-terminal pro-B-type natriuretic peptide (NT-proBNP) in an unselected cohort of people with DM (including known CVD) showed that patients with low levels of NT-proBNP have an excellent short-term prognosis

Prevention and epidemiology

NT-proBNP has a high negative predictive value to rule-out short-term cardiovascular events in patients with diabetes mellitus

Martin Huelsmann^{1†}, Stephanie Neuhold^{1†}, Guido Strunk², Deddo Moertl¹, Rudolf Berger¹, Rudolf Prager³, Heidemarie Abrahamian³, Michaela Riedl⁴, Richard Pacher^{1*}, Anton Luger⁴, and Martin Clodi⁴

¹Department of Cardiology, Medical University Vienna, Vienna, Austria; ²Research Institute for Health Care Management and Economics, University of Economics and Business Administration, Vienna, Austria; ³Third Department of Medicine, Hietzing Hospital, Vienna, Austria; and ⁴Department of Endocrinology, Medical University, Vienna, Austria

Received 24 January 2008; revised 24 June 2008; accepted 27 June 2008; online publish-ahead-of-print 23 July 2008

Table | Baseline clinical and laboratory characteristics

Number of unplanned cardiovascular hospitalization or death %	44 (7.00%)
Age (years)	58.70 ± 13.86
Gender (female), n (%)	282 (44.70)
Body mass index (kg/m ²)	30.21 ± 11.80
History of any cardiac disease (%)	144 (22.82)
History of ischaemic heart disease (%)	108 (17.12)
History of hypertension (%)	513 (81.30)
History of smoking (%)	274 (56.57)
RR sys (mmHg)	142.52 ± 22.34
HbA _{1c} (%)	8.00 ± 1.63
LDL-cholesterol (mg/dL)	112.16 ± 37.93
Serum-creatinine (mg/dL)	1.05 ± .45
GFR (mL/min)	92.73 <u>+</u> 39.98
NT-proBNP (pg/mL)	285.55 ± 489.43
NYHA-class (I/II/III/IV) (%)	428(67.8)/145 (23.00)/
	55(8.7)/3 (0.5)
MLHFQ (0-100)	11.22 ± 11.01
Dyspnoe score (1–10)	1.39 ± 6.60
Duration of diabetes (years)	9.28 ± 10.13
Serum-creatinine (log)	1.67E-3 ± .29
NT-proBNP (log)	4.95 ± 1.03

Baseline clinical and laboratory characteristics of 631 diabetic patients with and without an unplanned cardiovascular hospitalization or death.

Figure I Kaplan–Meier curves of all-cause mortality or unplanned cardiovascular hospitalization in 631 diabetic patients according to plasma-levels of NT-proBNP at baseline. Solid line: patients with NT-proBNP levels below cut-off (<125 pg/mL). Dashed line: patients with NT-proBNP levels above cut-off (>125 pg/mL). Log-rank test for overall difference, P < 0.0001.

Table I Baseline clinical and laboratory characteristics

Number of unplanned cardiovascular hospitalization or death %	44 (7.00%)
Age (years)	58.70 ± 13.86
Gender (female), n (%)	282 (44.70)
Body mass index (kg/m²)	30.21 ± 11.80
History of any cardiac disease (%)	144 (22.82)
History of ischaemic heart disease (%)	108 (17.12)
History of hypertension (%)	513 (81.30)
History of smoking (%)	274 (56.57)

Conclusion

We have demonstrated a strong and independent correlation between NT-proBNP and short-term prognosis of cardiovascular events for patients with diabetes mellitus. With a high negative predictive value it can identify individuals who are not at intermediate risk for cardiovascular events. NT-proBNP proved to be of higher predictive value than traditional cardiovascular markers, in this unselected cohort.

NT-proBNP (pg/mL)	285.55 ± 489.43
NYHA-class (I/II/III/IV) (%)	428(67.8)/145 (23.00)/
	55(8.7)/3 (0.5)
MLHFQ (0-100)	11.22 ± 11.01
Dyspnoe score (1-10)	1.39 ± 6.60
Duration of diabetes (years)	9.28 ± 10.13
Serum-creatinine (log)	1.67E-3 ± .29
NT-proBNP (log)	4.95 ± 1.03

Figure I Kaplan–Meier curves of all-cause mortality or unplanned cardiovascular hospitalization in 631 diabetic patients according to plasma-levels of NT-proBNP at baseline. Solid line: patients with NT-proBNP levels below cut-off (<125 pg/mL). Dashed line: patients with NT-proBNP levels above cut-off (>125 pg/mL). Log-rank test for overall difference, *P* < 0.0001.

Baseline clinical and laboratory characteristics of 631 diabetic patients with and without an unplanned cardiovascular hospitalization or death.

Vol. 62, No. 15, 2013 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2013.05.069

Biomarkers

PONTIAC (NT-proBNP Selected PreventiOn of cardiac eveNts in a populaTion of dlabetic patients without A history of Cardiac disease)

A Prospective Randomized Controlled Trial

Martin Huelsmann, MD,* Stephanie Neuhold, MD,*† Michael Resl, MD,‡ Guido Strunk, PhD,§|| Helmut Brath, MD,¶ Claudia Francesconi, MD,# Christopher Adlbrecht, MD,* Rudolf Prager, MD,** Anton Luger, MD,‡ Richard Pacher, MD,* Martin Clodi, MD‡

Vienna, Austria; and Dortmund, Germany

Objectives

The study sought to assess the primary preventive effect of neurohumoral therapy in high-risk diabetic patients selected by N-terminal pro-B-type natriuretic peptide (NT-proBNP).

Background

Few clinical trials have successfully demonstrated the prevention of cardiac events in patients with diabetes. One reason for this might be an inaccurate selection of patients. NT-proBNP has not been assessed in this context.

Methods

A total of 300 patients with type 2 diabetes, elevated NT-proBNP (>125 pg/ml) but free of cardiac disease were randomized. The "control" group was cared for at 4 diabetes care units; the "intensified" group was additionally treated at a cardiac outpatient clinic for the up-titration of renin-angiotensin system (RAS) antagonists and beta-blockers. The primary endpoint was hospitalization/death due to cardiac disease after 2 years.

Results

At baseline, the mean age of the patients was 67.5 ± 9 years, duration of diabetes was 15 ± 12 years, 37% were male, HbA $_{1c}$ was $7\pm1.1\%$, blood pressure was 151 ± 2 mm Hg, heart rate was 72 ± 11 beats/min, median NT-proBNP was 265.5 pg/mil (interquartile range: 180.8 to 401.8 pg/mil). After 12 months there was a significant difference between the number of patients treated with a RAS antagonist/beta-blocker and the dosage reached between groups (p < 0.0001). Blood pressure was significantly reduced in both (p < 0.05); heart rate was only reduced in the intensified group (p = 0.004). A significant reduction of the primary endpoint (hazard ratio: 0.351; 95% confidence interval: 0.127 to 0.975, p = 0.044) was visible in the intensified group. The same was true for other endpoints: all-cause hospitalization, unplanned cardiovascular hospitalizations/death (p < 0.05 for all).

Conclusions

Accelerated up-titration of RAS antagonists and beta-blockers to maximum tolerated dosages is an effective and safe intervention for the primary prevention of cardiac events for diabetic patients pre-selected using NT-proBNP. (Nt-proBNP Guided Primary Prevention of CV Events in Diabetic Patients [PONTIAC]; NCT00562952) (J Am Coll Cardiol 2013;62:1365-72) © 2013 by the American College of Cardiology Foundation

PONTIAC STUDY, JACC 2013

Figure 2

Kaplan-Meier Curves of the Primary Endpoint Hospitalization or Death Due to Cardiac Disease According to Treatment Strategy

PONTIAC STUDY, JACC 2013

Conclusions

Accelerated up-titration of RAS antagonists and beta-blockers to maximum tolerated dosages is an effective and safe intervention for the primary prevention of cardiac events for diabetic patients pre-selected using NT-proBNP. (Nt-proBNP Guided Primary Prevention of CV Events in Diabetic Patients [PONTIAC]; NCT00562952) (J Am Coll Cardiol 2013;62:1365–72) © 2013 by the American College of Cardiology Foundation

Figure 2

endpoint

Kaplan-Meier Curves of the Primary Endpoint Hospitalization or Death Due to Cardiac Disease According to Treatment Strategy

- The presence of albuminuria (30-299) mg/day) is associated with increased risk of CVD and chronic kidney disease (CKD) in T1DM and T2DM.
- Measurement of albuminuria may predict kidney dysfunction and warrant renoprotective interventions

The Relationship between Proteinuria and Coronary Risk: A Systematic Review and Meta-Analysis

Vlado Perkovic^{1,2*}, Christine Verdon², Toshiharu Ninomiya¹, Federica Barzi^{1,2}, Alan Cass^{1,2}, Anushka Patel^{1,2}, Meg Jardine¹, Martin Gallagher^{1,2}, Fiona Turnbull^{1,2}, John Chalmers^{1,2}, Jonathan Craig², Rachel Huxley^{1,2}

1 The George Institute for International Health, Sydney, New South Wales, Australia, 2 University of Sydney, Sydney, New South Wales, Australia

Table 1. Definitions of Albuminuria and Proteinuria

Measurement Method	Microalbuminuria	Macroalbuminuria	Proteinuria
24 hour urine collection	30-300 mg/day	>300 mg/d	>300 mg/d
Spot urine albumin concentration	3–30 mg/dl	>30 mg/dl	>30 mg/dl
Spot urine dipstick	Specific microalbuminuria dipstick positive	N/A	+ or greater
Spot urine albumin to creatinine ratio	30-300 mg/g or 3.4 g/mmol	>300 mg/g or 34 g/mmol	>200 mg/g or 23 g/mmol

ARTICLE

Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial

Peter Gæde^{1,2} • Jens Oellgaard^{1,2,3} • Bendix Carstensen³ • Peter Rossing^{3,4,5} • Henrik Lund-Andersen^{3,5,6} • Hans-Henrik Parving^{5,7} • Oluf Pedersen⁸

Fig. 1 Consort diagram of patient flow throughout the entire observation period. Procedures for enrolment and randomisation are described in [11]. Numbers lost to follow-up are cumulative

Fig. 1 Consort diagram of Randomised (n=160) patient flow throughout the entire observation period. Procedures for enrolment and randomisation are described in [11]. Numbers Allocated to conventional treatment 1993 Allocated to intensive treatment (n=80) lost to follow-up are cumulative (n=80)Assessed for microvascular Assessed for microvascular 7=76) Conclusions/interpretation At 21.2 years of follow-up of ollow-up (died): n=4 7.8 years of intensified, multifactorial, target-driven treatment of type 2 diabetes with microalbuminuria, we demonacrovascular strate a median of 7.9 years of gain of life. The increase in 7=67) ollow-up (died): n=13 lifespan is matched by time free from incident cardiovascular disease. All patients offered intensive treatment Post-trial follow-up assessment (n=56) Post-trial follow-up assessment (n=40) 2006 Lost to follow-up (died): n=40 Lost to follow-up (died): n=24 Long-term follow-up assessment (n=24) 2014 Lost to follow-up (died): n=55 Long-term follow-up assessment (n=42) · Lost to follow-up (emigrated): Lost to follow-up (died): n=38 n=1

Diabetologia 2016